Theoretical aspects of Neural Network application for signal/background separation

Dmitri Smirnov (smirnov@unm.edu)

Physics & Astronomy Department, University of New Mexico

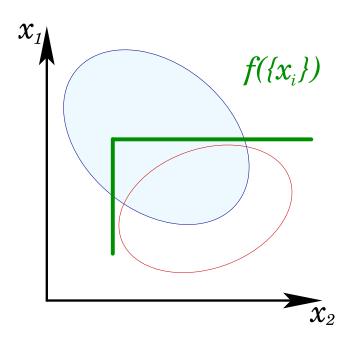
1 June 2002

Outline

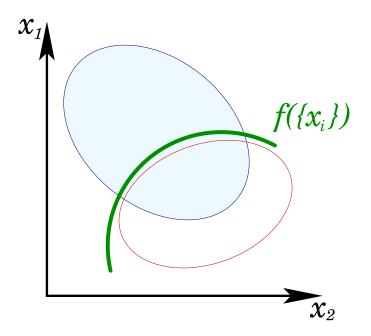
- ✓ Signal/background separation. Why ANN?
- \checkmark Kolmogorov theorem \Rightarrow one output + one hidden layer.
- ✓ Optimization of input variables.
- Estimations for number of hidden units.
- ✓ Conclusion.

Why Artificial Neural Network?

- \spadesuit Event information can be coded by several kinematic variables $\{x_i\}$
- ♠ Ideally final answer has 2 states (1 bit): signal (1) and background (0)



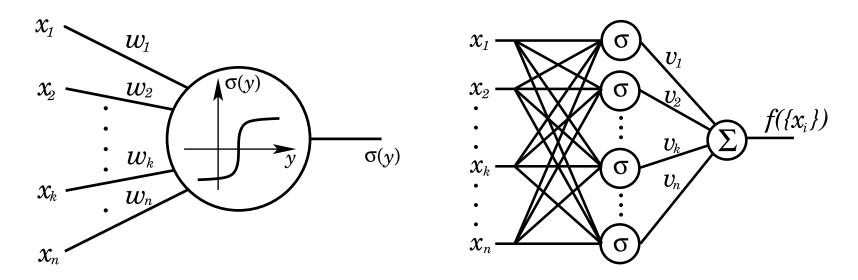
Classic cuts are essentially linear and "rectangular"



NN "cuts" depend on input values of all variables at the same time

ANN with one hidden layer and one output

 \spadesuit H is the number of hidden units, w_{ij} and v_j are weights, x_i are inputs, $\sigma(y) = \frac{1}{1+e^{-\alpha y}}$ is sigmoid function.



$$f(x_1, x_2, \dots, x_n) = \sum_{j=1}^{H} v_j \sigma(w_{1j}x_1 + w_{2j}x_2 + \dots + w_{nj}x_n).$$

AAG meeting

Theoretical representation of $f({x_i})$?

$$F(x_1, x_2, \dots, x_n) = \sum_{j=1}^{2n+1} g_j \left\{ \sum_{i=1}^n h_{ij}(x_i) \right\},\,$$

where g_j and h_{ij} are any continuous functions, h_{ij} does not depend on function F.

 \spadesuit Weakening of Kolmogorov theorem's conditions. $\forall \ \varepsilon > 0 \ \exists \ H, \ \exists \ \{w_{ij}\}$, and $\exists \ \{v_j\}$, such as

$$|f(x_1, x_2, \dots, x_n) - F(x_1, x_2, \dots, x_n)| < \varepsilon,$$

$$f(x_1, x_2, \dots, x_n) = \sum_{j=1}^{H} v_j \sigma(w_{1j} x_1 + w_{2j} x_2 + \dots + w_{nj} x_n).$$

- $h_{ij}(x_i) \longrightarrow w_{ij}x_i$, where w_{ij} are weights

How to use $f({x_i})$?

- ♠ We should adjust weights by training NN with known Monte-Carlo events
- ♠ Traning procedure is controlled by error function

$$\chi^2 = \frac{1}{2N} \sum_{i=1}^{N} (f_i - t_i)^2$$

- $lap{N}$ is the number of training events
- \clubsuit t_i is desired NN output
- \clubsuit f_i is actual NN output

The less value of the error function the more precise network we have

Optimization of input variables

- \spadesuit Goal: maximization of information in each input i from each sample n.
 - \clubsuit Entropy $H(\{x_i\}) \to max$.
- Different input variables (even NNs) for different signal-background pairs
 - \clubsuit Use physical sense to code difference between $S \leftrightarrow B_1, \ldots, S \leftrightarrow B_n$.

Correlation of input variables

$$H(x_i, x_j) \le H(x_i) + H(x_j)$$

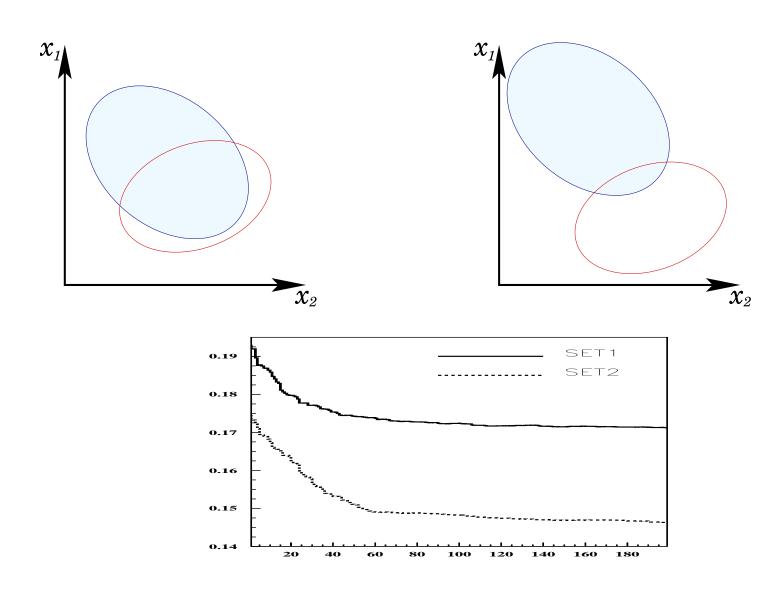
$$H(x_i, x_j) = H(x_i) + H(x_j)$$
 if x_i and x_j are independent

covariance matrix:

$$c_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} (x_i^{(k)} - \bar{x}_i^{(k)}) (x_j^{(k)} - \bar{x}_j^{(k)}) \quad \forall i \neq j, \quad \bar{x}_i \equiv \frac{1}{P} \sum_{k=1}^{P} x_i$$

$$C = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$
, $i, j = 1, 2$

• Result of variable optimization:



Estimations for number of hidden units ${\cal H}$

- Structure
 - \clubsuit H is number of hidden units
- $\clubsuit W \sim Hn$ is number of weights
- \clubsuit n and t are numbers of inputs and outputs
- \clubsuit P is number of training samples

Too small H can lead to undertraining

Too large H can lead to overtraining

Theoretical estimation

$$\epsilon \sim \epsilon_{approx} + \epsilon_{complexity}$$

$$\epsilon_{approx} \sim 1/H \sim d/W$$
, $\epsilon_{complexity} \sim W/P$

$$\epsilon \sim d/W + W/P o \min$$
 , when $W \sim \sqrt{Pn}$, i.e. $H \sim \sqrt{\frac{P}{n}}$

- $\clubsuit \ H \sim 2n+1$ from Kolmogorov theorem
- Empiric estimations

$$H = 0.5(n+t) + \sqrt{P}, \qquad H = 2\sqrt{tn}$$

Conclusion

- ♠ NN can give better result if it is used correctly
- References:
 - Internet. Ask search engines.
 - smirnov@unm.edu

AAG meeting 1 June 2002